On the quantum no-signalling assisted zero-error classical simulation cost of non-commutative bipartite graphs

Abstract

© 2016 IEEE.Using one channel to simulate another exactly with the aid of quantum no-signalling correlations has been studied recently. The one-shot no-signalling assisted classical zero-error simulation cost of non-commutative bipartite graphs has been formulated as semidefinite programms [Duan and Winter, IEEE Trans. Inf. Theory 62, 891 (2016)]. Before our work, it was unknown whether the one-shot (or asymptotic) no-signalling assisted zero-error classical simulation cost for general non-commutative graphs is multiplicative (resp. additive) or not. In this paper we address these issues and give a general sufficient condition for the multiplicativity of the one-shot simulation cost and the additivity of the asymptotic simulation cost of non-commutative bipartite graphs, which include all known cases such as extremal graphs and classical-quantum graphs. Applying this condition, we exhibit a large class of so-called cheapest-full-rank graphs whose asymptotic zero-error simulation cost is given by the one-shot simulation cost. Finally, we disprove the multiplicativity of one-shot simulation cost by explicitly constructing a special class of qubit-qutrit non-commutative bipartite graphs.

Publication
2016 IEEE International Symposium on Information Theory (ISIT)
Xin Wang
Xin Wang
Associate Professor

The main focus of my research is to better understand the limits of information processing with quantum systems and the power of quantum artificial intelligence.