Efficiently Computable Bounds for Magic State Distillation

Abstract

Magic state manipulation is a crucial component in the leading approaches to realizing scalable, fault-tolerant, and universal quantum computation. Related to magic state manipulation is the resource theory of magic states, for which one of the goals is to characterize and quantify quantum “magic.” In this paper, we introduce the family of thauma measures to quantify the amount of magic in a quantum state, and we exploit this family of measures to address several open questions in the resource theory of magic states. As a first application, we use the min-thauma to bound the regularized relative entropy of magic. As a consequence of this bound, we find that two classes of states with maximal mana, a previously established magic measure, cannot be interconverted in the asymptotic regime at a rate equal to one. This result resolves a basic question in the resource theory of magic states and reveals a fundamental difference between the resource theory of magic states and other resource theories such as entanglement and coherence. As a second application, we establish the hypothesis testing thauma as an efficiently computable benchmark for the one-shot distillable magic, which in turn leads to a variety of bounds on the rate at which magic can be distilled, as well as on the overhead of magic state distillation. Finally, we prove that the max-thauma can outperform mana in benchmarking the efficiency of magic state distillation.

Publication
Physical Review Letters
Xin Wang
Xin Wang
Associate Professor

Prof. Xin Wang founded the QuAIR lab at HKUST(Guangzhou) in June 2023. His research primarily focuses on better understanding the limits of information processing with quantum systems and the power of quantum artificial intelligence. Prior to establishing the QuAIR lab, Prof. Wang was a Staff Researcher at the Institute for Quantum Computing at Baidu Research, where he concentrated on quantum computing research and the development of the Baidu Quantum Platform. Notably, he spearheaded the development of Paddle Quantum, a Python library designed for quantum machine learning. From 2018 to 2019, Prof. Wang held the position of Hartree Postdoctoral Fellow at the Joint Center for Quantum Information and Computer Science (QuICS) at the University of Maryland, College Park. He earned his doctorate in quantum information from the University of Technology Sydney in 2018, under the guidance of Prof. Runyao Duan and Prof. Andreas Winter. In 2014, Prof. Wang obtained his B.S. in mathematics (with Wu Yuzhang Honor) from Sichuan University.