Reversing Unknown Quantum Processes via Virtual Combs: for Channels with Limited Information

Reversing depolarizing channels with unknown parameters via virtual comb.

Abstract

The inherent irreversibility of quantum dynamics for open systems poses a significant barrier to the inversion of unknown quantum processes. To tackle this challenge, we propose the framework of virtual combs that exploit the unknown process iteratively with additional classical post-processing to simulate the process inverse. Our research establishes a path to achieving the exact inverse of unknown channels with certain conditions, accompanied by a no-go theorem that underscores the intrinsic limitations imposed by quantum mechanics on such tasks. Notably, we demonstrate that an n-slot virtual comb can exactly reverse a depolarizing channel with one unknown noise parameter out of n+1 potential candidates, and a 1-slot virtual comb can exactly reverse an arbitrary pair of quantum channels. We further explore the approximate inverse of an unknown channel within a given channel set. For any unknown depolarizing channels within a specified noise region, we unveil a worst-case error decay of O(n^(-1)) of reversing the channel via virtual combs. Moreover, we show that virtual combs with constant slots can be applied to universally reverse unitary operations and investigate the trade-off between the slot number and the sampling overhead.

Publication
arXiv:2401.04672
Chengkai Zhu
Chengkai Zhu
PhD Student

I obtained my BS in Applied Mathematics from China Agricultural University under the supervision of Prof. Zhencai Shen. I obtained my MS degree in Cyberspace Security from University of Chinese Academy of Sciences under the supervision of Prof. Zhenyu Huang. My research interests include quantum information theory and quantum computation.

Yin Mo
Yin Mo
Research Associate

I obtained my BS in Fundamental Science in Physics and Mathematics from Tsinghua University. I obtained my PhD degree in Computer Science from the University of Hong Kong. My research interests include quantum information theory, quantum supermaps and quantum machine learning.

Yu-Ao Chen
Yu-Ao Chen
Research Associate

I obtained my BS in Mathematics and Applied Mathematics from University of Science and Technology of China. I obtained my PhD degree in Applied Mathematics from University of Chinese Academy of Sciences under the supervision of Prof. Xiao-Shan Gao. My research interests include quantum computing, symbolic computation and cryptanalysis.

Xin Wang
Xin Wang
Associate Professor

The main focus of my research is to better understand the limits of information processing with quantum systems and the power of quantum artificial intelligence.